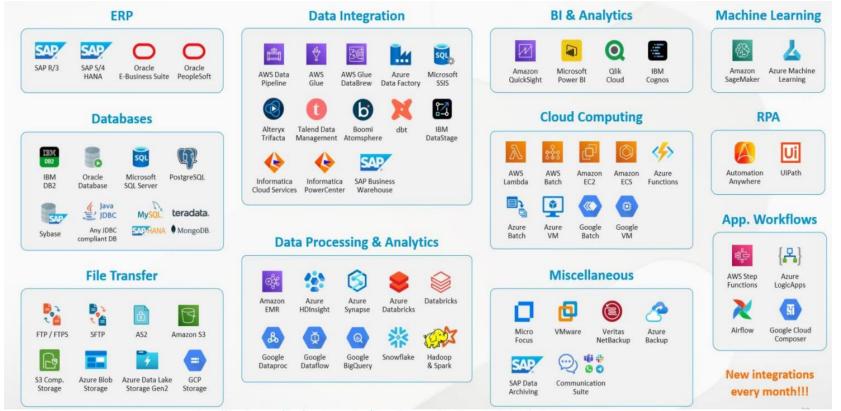
SRv6 Unleashed: Architecting Scalable, SLA-Aware Networks for the Multicloud Era

Leveraging TIME's 3Cs of Digitalization Strategy for Business Success

Section 1 The Multicloud Landscape & Its Demands


Section 2 Introducing SRv6 – The Path to Modern Networking

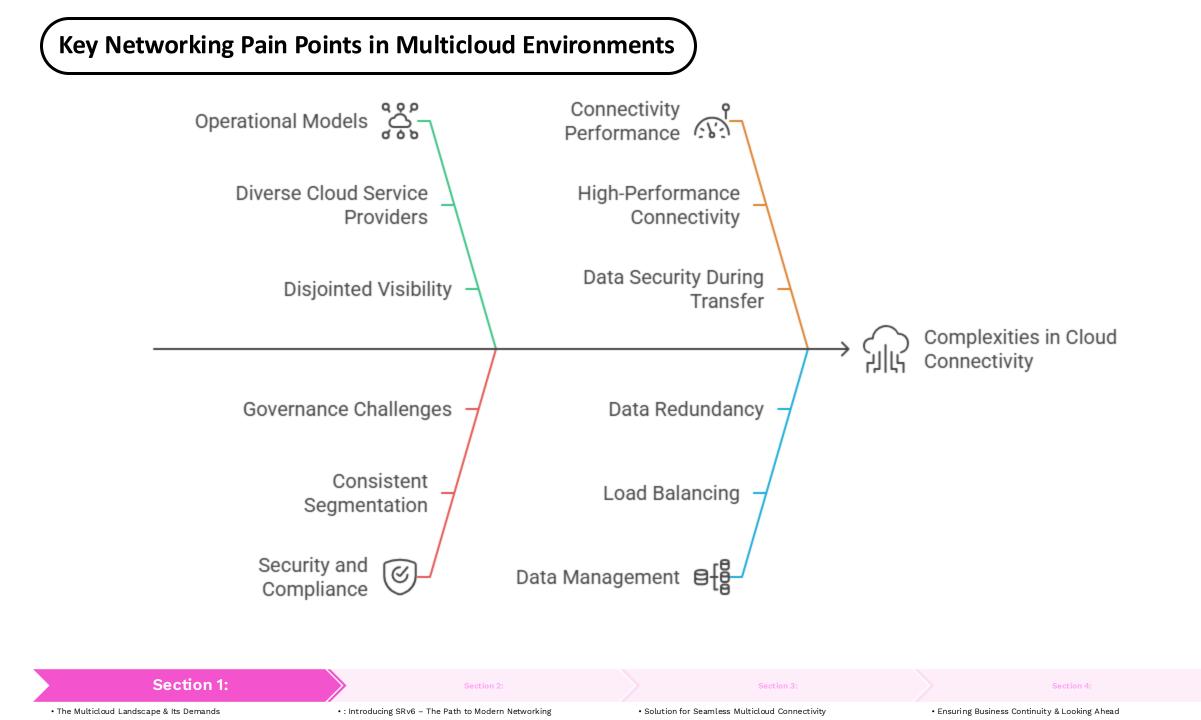
Section 3 TIME's SRv6 Solution for Seamless Multicloud Connectivity

Section 4 Ensuring Business Continuity & Looking Ahead

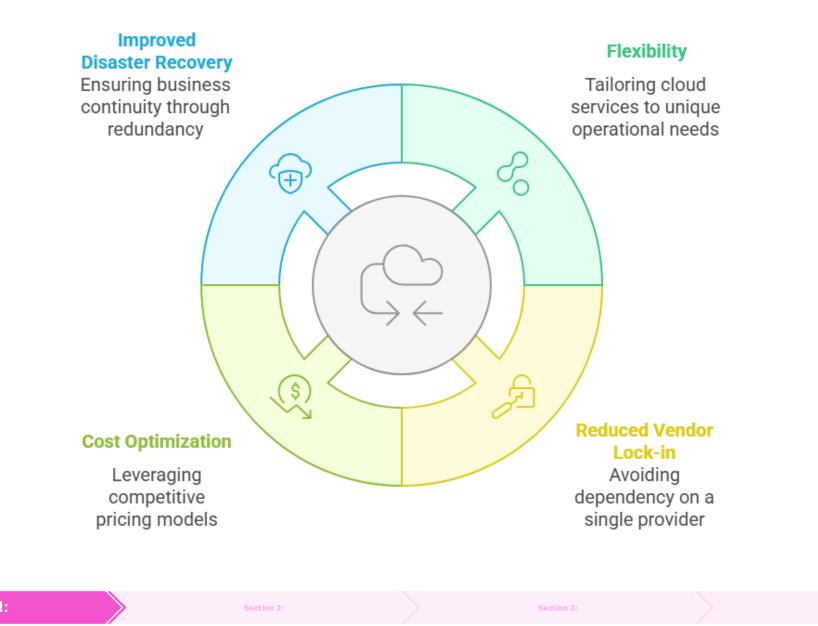
Introduction- Rise of multicloud & enterprise demands

• Cloud services have become an integral part of modern business operations due to their scalability, flexibility, and cost-efficiency. Coupled with the growing demand for reliable and high-performance connectivity, it is evident that a robust network infrastructure is crucial for businesses.

https://docs.bmc.com/docs/ctm_integrations/control-m-integrations-home-994589883.html


Section 1:

Sectio


· : Introducing SRv6 - The Path to Modern Networking

Section 4

• The Multicloud Landscape & Its Demands

Key reasons for adoption of Multi-cloud architecture

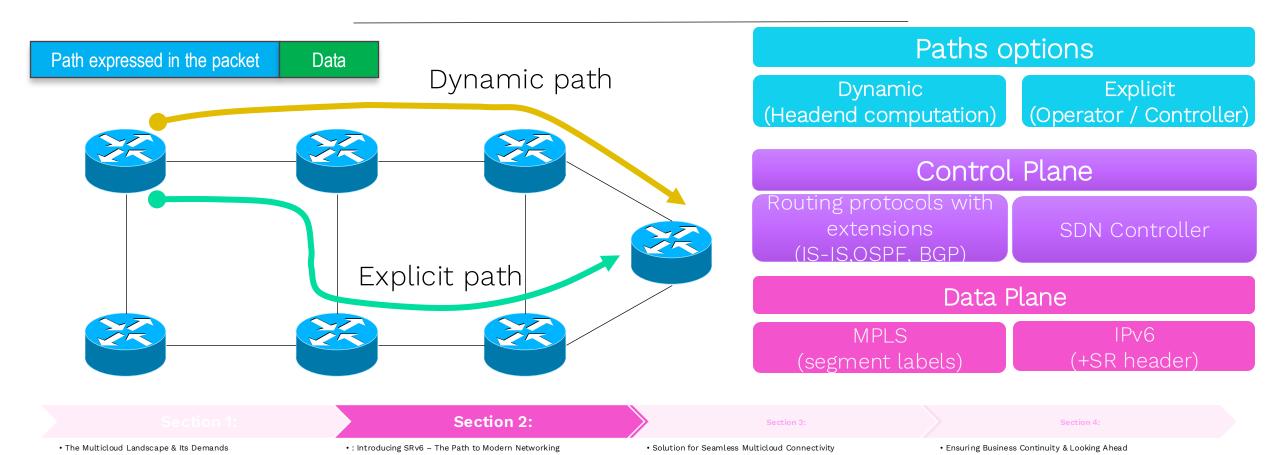
Section 1:

Section 4:

SRv6 with Network Programmability-What is changing in the network?

Industry Solution: SLA lacks proactive Time Solution: Proactive SLA monitoring, Use Cases: Seamless DC connectivity with monitoring, and quality deterioration does proactive adjustment of quality deterioration SRv6 not have automatic closed-loop measures. paths, and closed-loop self-healing Service quality (packet loss, congestion and Latency) cannot Real-time: Monitor and adjust SLAs dynamically, calculating With **proactive SLA** monitoring, the system **dynamically** be perceived in real time. service paths accordingly. adjusts the data path between DCs based on real-time Services cannot be automatically optimized after SLA Closed-loop: Guarantee SLA policies: display on optimization • ٠ conditions, ensuring seamless replication and minimal service deterioration. The delay of high-value services cannot be page and auto-optimize when SLA breaches. disruption **Cost effectivity** solution as DWDM alternative guaranteed. Service Delay Threshold SDN-Controller Minimum Viable Backup & Restor Warm standb Hot standby BGP-LS\BGP-SR\NETCONF\SNMP VPN1 10ms Environmen (with multi-site) VPN2 20ms Hours Step1: Manually Plan Explicit Paths. RPO/RTO RPO/RTO RPO/RTO RPO/RTO 10s of Minutes Hours Minute Real-time PE Step2: Delay Lower priority use case Solutions that require Auto-failover of you Manual identification · Cost RTO & RPO requireme RTO & RPO in minute increases. Ъ Business critical service Cost: \$\$\$\$ S1: One-click service provisioning with service SLA Scale Cloud resource Cort-CCC of faults X hours response to aDR ever Services Complaints Recovery Time Objective (RTO): The maximum allowable affected length of time that can pass after a disruption before the Real-time Action Service Latency **←---**· Step3: system must be restored. **Optimization Request** Manually adjust VPN1 Trigger Path Recovery Point Objective (RPO): The maximum allowable Recalculation. the service path. length of time during which data might be lost due to a VPN2 18ms major incident. S2: Real-time statistics of link/node/service latency NOK DC-to-DC and Site to DC seamles: connectivity with SRv6 SDN-Controller Real-time Latency Service BGP-LS\BGP-SR\NETCONF\S WANEdge VPN1 9 ms 翩 翩 VPN2 18 ms Manual 0000 Error-prone TCS - Region TCS - Region 2 Branch Office S3: Latency cracking, triggering path recalculation Section 2:

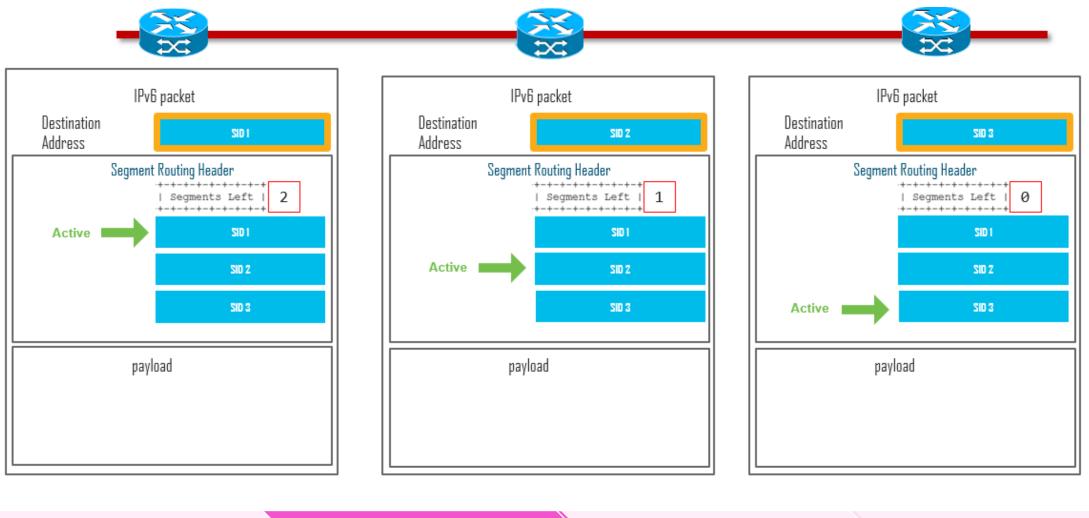
• The Multicloud Landscape & Its Demands


• : Introducing SRv6 – The Path to Modern Networking

Solution for Seamless Multicloud Connectivity

• Ensuring Business Continuity & Looking Ahead

Segment Routing


An IP and MPLS source-routing architecture that seeks the **right balance** between **distributed intelligence** and **centralized optimization**

IPv6 Forwarding Plane Operation

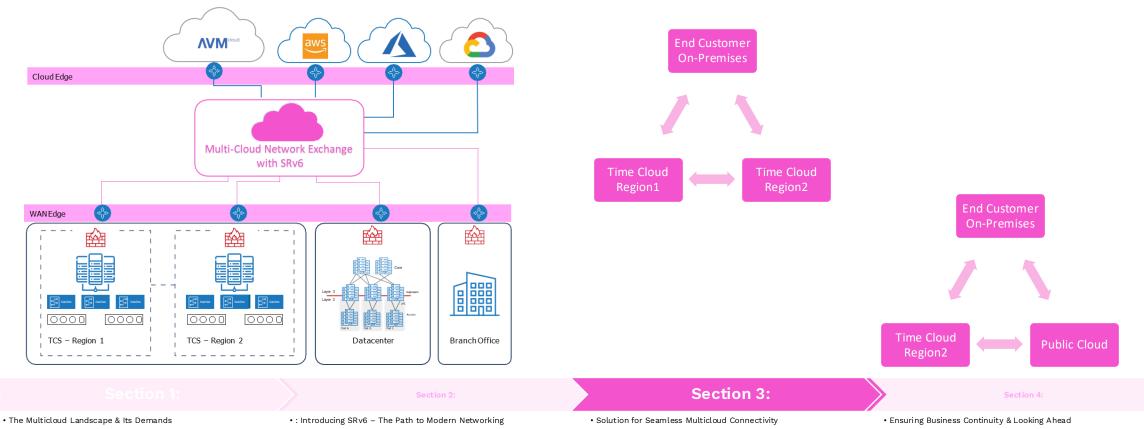
Active segment is in the destination address

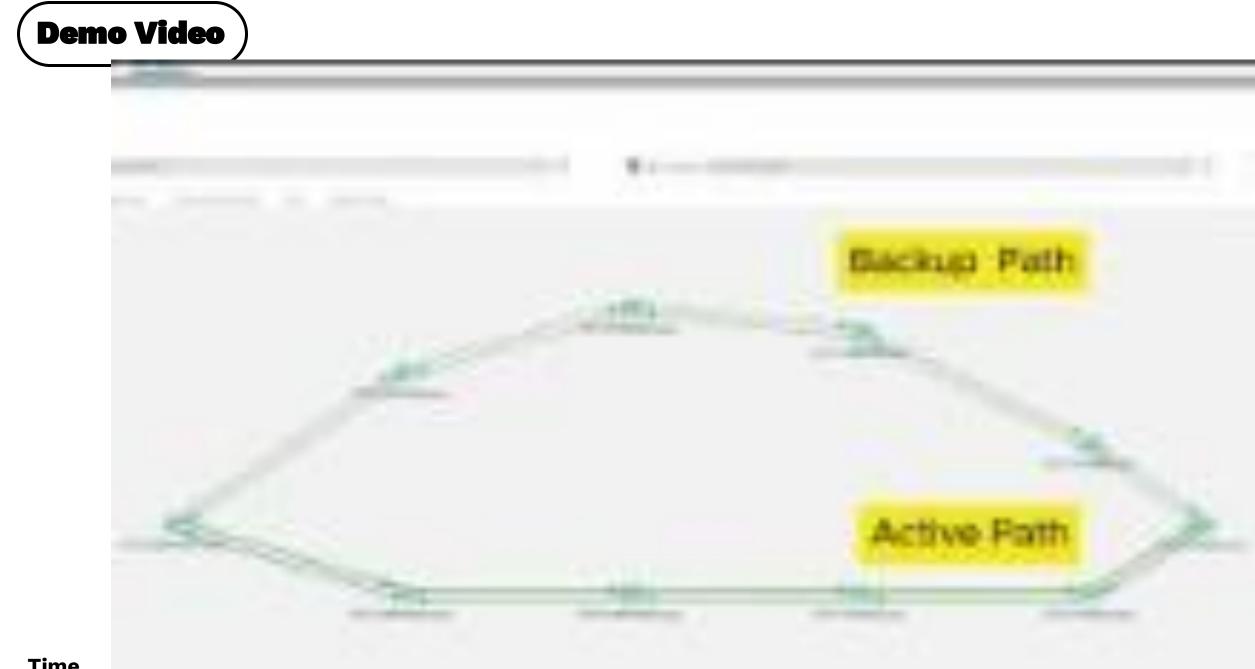
List of Segments in Segment Routing Header

• The Multicloud Landscape & Its Demands

Introducing SRv6 – The Path to Modern Networking

Section 2:


Solution for Seamless Multicloud Connectivity


• Ensuring Business Continuity & Looking Ahead

Solution Overview

٦.

- The proposed solution leverages TIME's extensive network infrastructure and expertise in cloud services to address these challenges.
- It adopts a holistic approach that combines cloud services and connectivity to deliver a seamless experience for enterprise customers.
- The solution also emphasizes the importance of a "cloud-aware" network architecture, which offers benefits such as unified management and security compliance across the organization's IT infrastructure, cloud-native integration, application-aware network infrastructure, faster time to market, and programmability and automation.

Operational Impact: Key Observations

Category	Before SRv6 (Traditional MPLS/IP)	With SRv6 + SDN (Deployed Architecture)
Provisioning Time	Manual service provisioning via CLI or NMS; high risk of human error. Takes 2–4 hours per service depending on complexity.	One-click service provisioning via SDN controller using SRv6 traffic engineering templates. Completed in 10–15 minutes .
Path Optimization	Pre-defined static or semi-manual MPLS-TE paths. Changes require manual intervention and maintenance window.	Real-time path optimization triggered by SLA policy breach. Controller dynamically calculates alternate paths.
SLA Violation Detection	Reactive, based on end-user complaints or SNMP monitoring. Delays in detection and root cause identification.	Proactive SLA monitoring via telemetry. Latency, jitter, and loss thresholds continuously monitored by the controller.
Failover Response	May involve manual switch-over or depend on IGP convergence. RTO in several minutes or longer.	Sub-second reroute upon SLA breach or node/link failure. RTO in 1–3 seconds .
Visibility & Analytics	Limited visibility into per-path performance. Relies on static monitoring and historical logs.	Real-time telemetry and path statistics at service level (VPN, DC path, etc.), enabling faster troubleshooting and reporting.
Service Consistency	Inconsistent due to manual changes, legacy systems, and lack of feedback loop.	Consistent SLA assurance via closed-loop control with automated remediation.
Scalability	Operationally intensive to scale. More services = more complexity.	Scales elastically via policy templates and programmable dataplane.

Time

Service Deployment Scenario/Customer Need and Use Cases

The table below outlines the scenarios, customer needs, and use cases for the proposed solution:

Scenario	Customer Need	Use Cases	
End Customer On-Premises to Public Cloud	Reliable and high-performance connectivity for seamless access to public cloud services	 Data backup and disaster recovery Accessing cloud-based applications and services Offloading compute-intensive workloads to the cloud Leveraging cloud-based storage solutions 	
End Customer On-Premises to TIME Cloud	Reliable network service for seamless connection between on- premises infrastructure and TIME's cloud	 Private cloud hosting Data storage and backup Collaborative workspaces Virtual desktop infrastructure (VDI) Secure remote access to enterprise resources hosted in TIME Cloud 	
TIME Cloud to Public Cloud (e.g., AWS)	Reliable and secure connectivity between TIME's cloud infrastructure and public cloud providers	 Hybrid cloud deployments Workload offloading for burstable workloads Leveraging specialized services available in public clouds Data synchronization for multi-cloud environments Disaster recovery scenarios 	
Between Regionwithin TIME Cloud	Network service for smooth communication and data synchronization between different availability zones	 High availability and fault tolerance Load balancing for optimized resource utilization Data redundancy for improved data integrity Seamless failover capabilities for business continuity 	

Disaster Recovery (DR) strategies

When selecting a data replication method, it is crucial to assess your RTO and RPO needs and align these with your network capabilities. Here is a table that outlines the characteristics of each data replication method:

	Backup & Restore	Minimum Viable Environment	Warm Standby	Multi-Site
Application Criticality (Low to High)	Low	Medium	High	Very High
Budget (Low to High)	Low	Medium	High	Very High
Acceptable Data Loss (RPO: High to Lo	w) High	Medium	Low	Very Low
Acceptable Downtime (RTO: High to Lo	ow) High	Medium	Low	Very Low
Backup & Restore	Minimum Viab Environment	ble	Warm standby	Hot standby (with multi-site)
Low				High
RPO/RTO:	RPO/RTO:		RPO/RTO:	RPO/RTO:
Hours	10s of Minutes		Minutes	Real-time
 Lower priority use cases Cost:\$ 	 Meeting lower RTO & RPO requirements Core services Scale Cloud resources in response to aDR event Cost: \$\$ 	•	Solutions that require RTO & RPO in minutes Business critical services Cost: \$\$\$	 Auto-failover of your Cloud environment Cost: \$\$\$\$
Time Section 1:	Section 2:		Section 3:	Section 4:
• The Multicloud Landscape & Its Demands	• : Introducing SRv6 – The Path to Modern Networking	• Solution for Seamless	Multicloud Connectivity • Ensurin	ng Business Continuity & Looking Ahead

Section 1 The Multicloud Landscape & Its Demands

Summary

- Understanding the rise of multicloud and enterprise requirements for robust, agile connectivity.
- Exploring key drivers for multicloud adoption (flexibility, cost, DR, vendor choice).
- Identifying critical networking pain points in complex multicloud environments.

Section 2 Introducing SRv6 – The Path to Modern Networking

- Overview of Segment Routing principles and its evolution.
- Deep dive into SRv6 forwarding plane operations and its native IPv6 capabilities.
- How SRv6 enables network programmability and proactive, SLA-driven path management.

Section 3 TIME's SRv6 Solution for Seamless Multicloud Connectivity

- Detailing TIME's holistic approach and "cloud-aware" network architecture, powered by SRv6.
- Showcasing the Multi-Cloud Network Exchange with SRv6 as a core enabler.
- Illustrating how SRv6 addresses diverse customer deployment scenarios and use cases.

Section 4 Ensuring Business Continuity & Looking Ahead

- The role of SRv6 in supporting robust Disaster Recovery (DR) strategies by meeting RTO/RPO.
- **Time** Future outlook for SRv6, its potential developments, and its impact on next-generation services.

Any questions?

And that's time

