

CODING BUSINESS LOGIC INTO THE NETWORK THROUGH AUTOMATION A Large Tier1 Case study

Nitin Vig & Aditya Kaul Solution Architects – Juniper Networks

The autonomous network journey

From manual to self-driven networks powered by AI

Manual Ops

- CLI-based device configuration.
- Legacy OSS/NMS.

Time spend on customers sites

52%

Semi-Automated Network Management

- Automated daily repetitive tasks, events.
- Hardcoded service provisioning.
- Automated stitching of small set of configs.
- ML enabled anomalies detection such as bad cable detection.

Time refocused on critical issues; accelerated time to market.

Conditional Autonomous Network

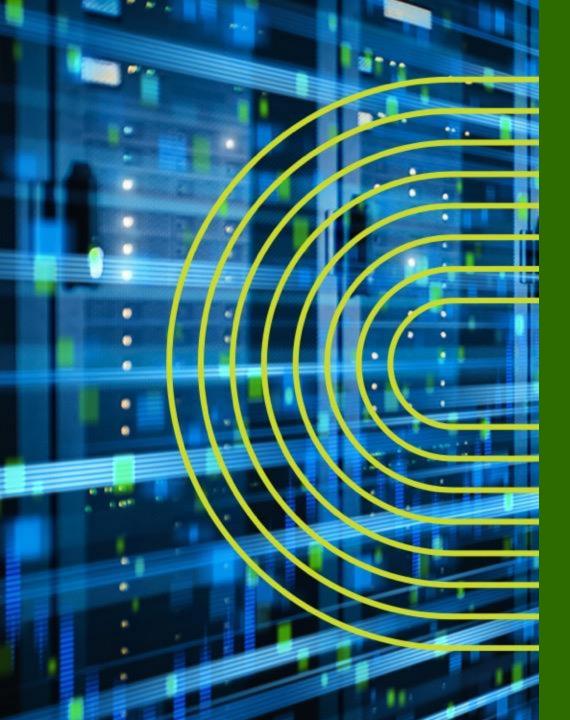
• Automated E2E active assurance.

- Intent-based service orchestration.
- Automated Root-Cause Analysis.
- Virtual Network Assistant (chatbot) for recommended actions.

Critical issues identified and resolved prior to customers noticing them.

12% Self-Driving Network

- AI/ML based continuous learning.
- Predictive insights.
- Closed-loop remediation (AI/ML driving autonomous actions_).
- Hybrid automation delivery model (cloud and/or on prem).


Critical issues identified and resolved autonomously. Guaranteed experience.

> Current level of automation -Survey of 217 automation leaders

6%

and in war rooms.

Motivation & Goals

Executive Summary

Automation is a key initiative that cuts across architecture layers in a Service Provider environment

Networks need a technology shift and investments to maintain leadership position and profitable growth

Automation

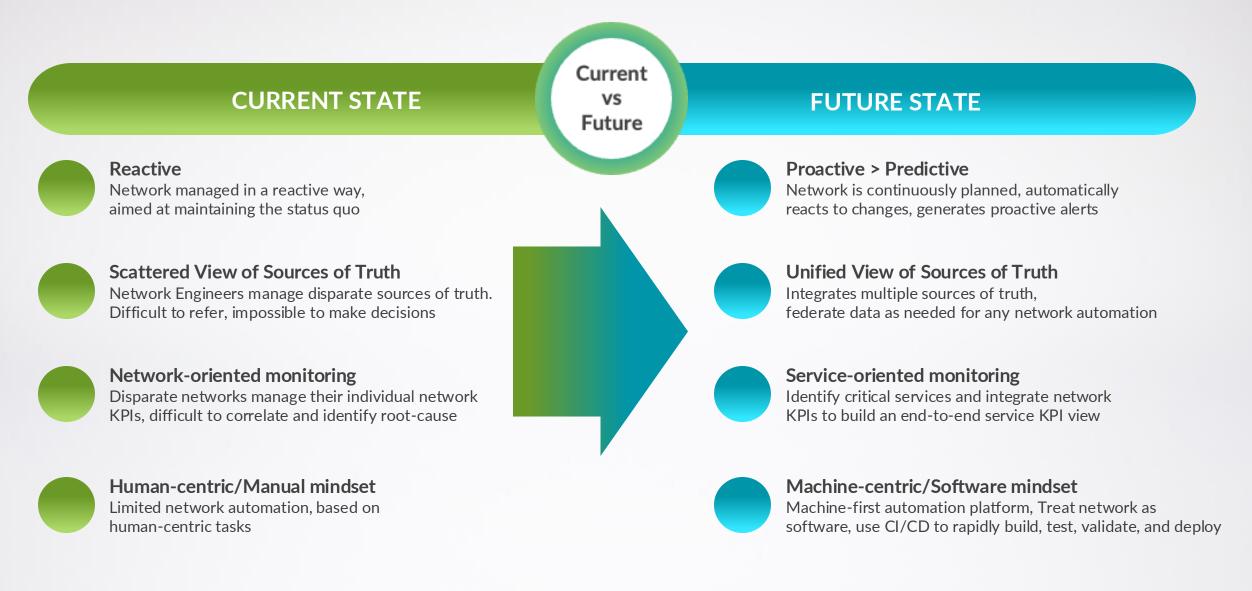
- Create operational simplicity
- Predict demand and service experience needs
- Enable greater levels of transparency and control to the network and services.
- Differentiate customer experience
- Increase speed to market
- Create market offers (Service on demand)
- Reduce the cost to serve at scale.

Cost saving

Service prioritization

Improved customer experience

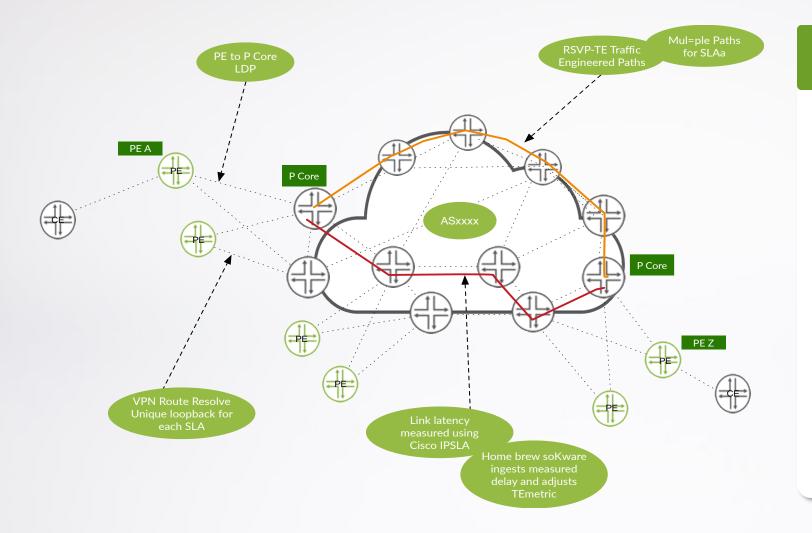
• Strict Diversity guarantee


Revenue growth

- Latency-aware routing
- Smart Bandwidth

The **cost of doing nothing** is that the business will miss market commitments and face declining revenues.

Current Challenges vs Performance Outcomes

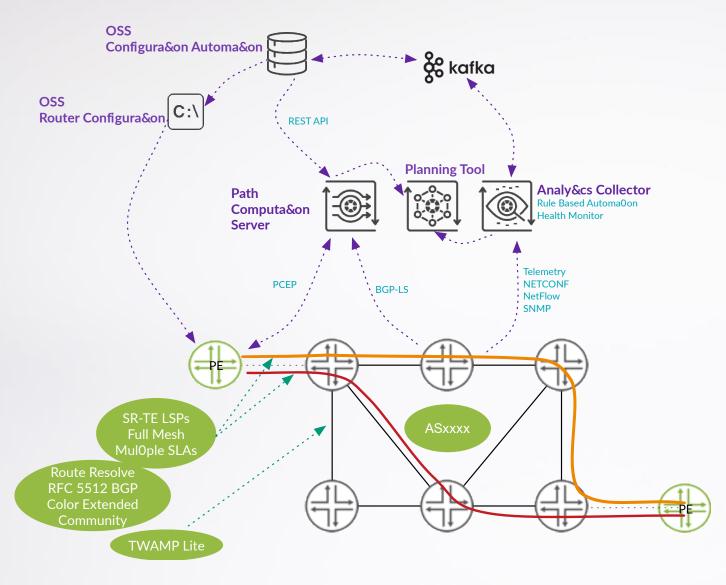

Customer goals

Use-case

Business impact

Service Prioritization	Direct lower priority traffic to longer latency paths	 Safely run the network hotter Delay upgrades especially on premium routes Added capability to compute paths based on circuit cost Cost saving
Strict Diversity Guarantee	Dynamically build 'disjoint' network paths during normal conditions & network outages	 Deliver true service separation end-to-end (a 'fully-redundant' service) A more resilient network that automatically reacts to faults and network design changes (maintains diversity during failure) Customer experience
Latency-aware routing	Engineer traffic for specific services based on measured or derived network latency	 Transport selected traffic flows over lower latency paths as defined by policy Rapidly react to detected latency changes and recompute new paths. Replace home-grown solution (Robot) by off the shelf solution Revenue growth
Smart Bandwidth	Detect congestion and offload excess traffic to cheaper, longer latency links	 Opportunity to create new service tiers (Premium, Standard+, Standard) Better utilization of unused network capacity Better experience for high-profile customers
Planned or 'unplanned' event automation	Automated traffic routing during a planned/unplanned event based on pre-defined rules	 Advance preparation of altered network behaviour designed to accommodate a known forthcoming event (know what to expect) Reduce or eliminate impact to customers from known events Customer experience
© 2022 Juniper Networks		Juniper Public JUNIPEC, 6

Legacy Network


Network Status Quo

Automation done in parts, but not as a holistic solution aligned to business objectives

- Home-grown automation tool to update network metrics; Dependent on SME, difficult to scale
- Multi-vendor networks with no or limited end-to-end automation capabilities
- Multiple provisioning, workflow and operation tools with no integration.
- Limited service-differentiation capabilities
- Demand prediction using excel sheets and personnel insights.

Goal Network

Network Future State

Automation taken up as key initiative that integrates multiple vendors and tools to achieve business objectives.

- Focus on specific use-cases that either improve customer experience or generate new revenue or both.
- Dual Vendor Network , MPLS/SR network based on Industry Standards
- Multiple automation vendors platforms: Integrated Service provisioning, Workflow automation, PCE controller, Analytics engine and Network planner to achieve the specific use-cases
- Summary of the outcomes:
 - Greater transparency and control on the network and services running on top.
 - Automation Framework based on IETF standards using multi vendor platforms
 - Create new services on demand with differentiated customer experience
 - Increase speed to market & Reduce the cost to serve at scale.

Juniper Public

Foundational Components

Foundational capabilities for Automation

Industry-standard

Open-source

Traffic engineering

- ISIS: Traffic Engineering Database
- LSPs for traffic engineering (RSVP/SR):
 - Traffic-engineered paths (Static & Dynamic)
 - Color-based forwarding
 - Baseline SLA

BGP-LS:

- Network topology discovery
- IGP/TE metrics, Link delay, admin-groups
- PCEP: Dynamic path computation
- PCE Controller: IETF Compliant
 - Path Computation Element (PCE)
 - TE topology management
 - SLA-based routing methods (IGP metric, TE metric, delay, measuredDelay, userCost)
 - Value-added SLA on top of Baseline

Network planning

- Offline planning tool:
 - Network capacity planning

Telemetry & Analytics

- Metric collection & reporting:
 - Metric reporting: IETF Open Config Telemetry, SNMP, Netconf, NetFlow
 - Metric collection: TWAMP, IPSLA, RPM
- Collector & Analytics tool:
- Multiple ingest from devices (Telemetry, SNMP. Netconf, NetFlow, Syslog)
- Data analytics using Time-series DB, Embedded rules and machine learning
- Closed-loop automation: Value-add SLA
 automation
- Share data/alerts with 3rd party systems from different vendors for reporting

Workflow automation

- Workflow Automation Tool:
 - Automate existing manual/semi-automated operational workflows (MoPs)
 - Act as a glue amongst various tools (Analytics, Configuration, Ticketing, Inventory, OSS)

Network source of truth

- Multi vendor Configuration management & Service provisioning tool:
 - Act as a single source of truth for all network configuration
 - Provisioning devices (baseline/golden config) and services (L2/L3 VPN)
 - Managing device configuration files

Additional capabilities

- Multi Vendor OSS: Operator front door
 - Router/Link onboarding, Add/remove/changes
 - REST API integration to other systems such as SDN controller to add/update LSPs
 - Network inventory management
- Message bus (Kafka):
 - Exchange data/alerts across multiple systems
- Integration between multiple systems using REST APIs

Automation Strategy

Operate

- Schedule Maintenance events
- Add Links and routers
- Monitor Health
- Add more high value services!

Value Use Cases - Add value to the Baseline Foundation

- Planned Event Driven Automation
- Delay Based Routing
- Strict Diversity
- Service Prioritization
- Smart Bandwidth

Foundation Use Case

- Baseline network; known routing state - Baseline network with known SLAs

Upgrade IGP - TED Add TWAMP

Underlay Baseline - Deploy RSVP/SR

- Migrate services

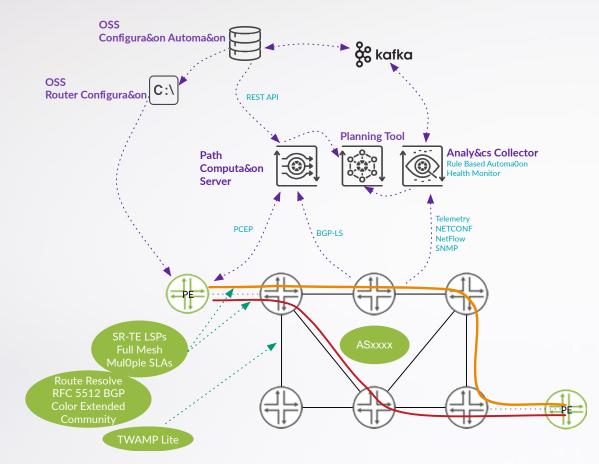
Operator Planner Engineering

PCEP and BGP-LS

JTI, gRPC, SNMP, NETCONF, NetFlow

REST API for adds/moves/changes

Playbooks, User Functions, automation Rules


Kafka Publish and Consume automated updates

PCS and Analytics Infrastructure

- Automation tool
 - Path Computation Element (PCE) controller
 - Analytics Engine

Foundation Network – Topology Acquisition

- RSVP/SR-TE LSPs configured on the PCC are delegated to <u>PCE</u> using PCEP.
 - Delegated RSVP/SR-TE LSPs are added to the PCE database.
- Links and Nodes (i.e., routers) are learned via BGP-LS on PCE
 - Links and Nodes are added to the PCE database.

BGP-LS: RFC7752 Update Message

- □ MP_REACH_NLRI
 - 🛛 Link
 - □ IPv4 interface address
 - □ IPv4 neighbor interface address
- □ BGP-LS Type Code 29
 - □ admin-groups/affinity-bits
 - □ TE metric/IGP Metric
 - SR Adjacency SIDs
 - Unidirectional Link Delay

Path Computation Element Protocol (PCEP): RFC5540/RFC8664

- PCC PCRpt
 - □ SR-ERO sub object
 - □ Record Route Object (RRO)
 - LSP Attributes
 - admin-groups include-all, include-any, exclude-any
 - LSP Object flags Delegate bit
- PCE PCUpd
 - □ Explicit Route Object (ERO)

Foundation Network – Use Case Design Principals

• PCE RSVP/SR-TE LSP Value added Path Optimization

- 1. Prune Links based on constraints
- 2. Select paths that satisfy Advance Properties
- 3. Routing Method determines which metric to use (see next slide)
 - a. Calculate lowest cost path.

Constraints

- admin-groups
 - include-all, exclude, include-any
- Bandwidth Sizing
 - Link Utilization Threshold constraint
- Explicit Path

Advanced Properties

- Symmetric Pair Group
 - RSVP/SR-TE LSP A-B and B-A
- Diversity Group/Diversity Level
 - Two(2) RSVP/SR-TE LSPs require diverse paths
- SliceID
 - include-all, exclude, include-any

Routing Method

- routeByDevice
- default
- ISIS/OSPF
- delay
- adminWeight

Foundation Network – Use Case Design Principals

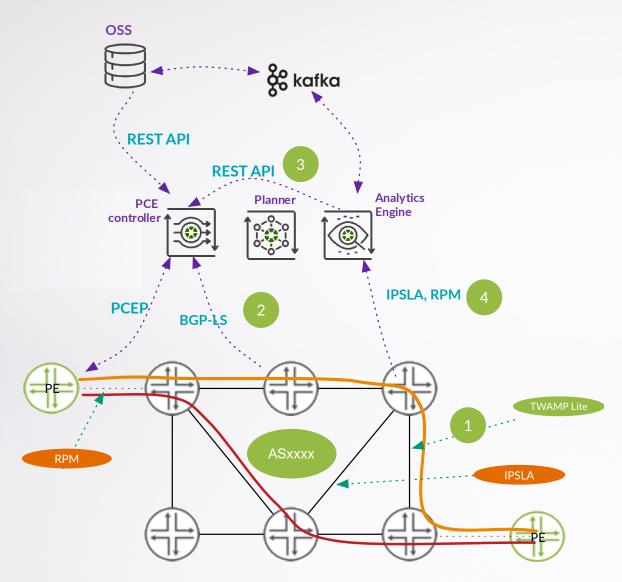
• PCE Link Properties

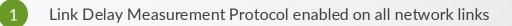
metrics	IGP metric	routingMethod = ISIS/OSPF
	TEmetric	routingMethod = default
	measuredDelay	routingMethod = delay, RFC 8570 IS-IS ISIS extended IS reachability , Unidirectional Link Delay, TWAMP Lite.
	userCost	routingMethod = adminWeight, user defined metric representing monetary cost.
	delay	routingMethod = delay, configured PCE controller value overriding <i>measuredDelay</i>
Advanced Properties	admin-groups	Router configured admin-groups;RFC5305 Sub TLV 3
	Link Utilization Threshol	Specify the threshold value for link utilization when traffic on a link exceeds this value, PCE controller triggers re- routing for label switched paths (LSPs).
	Packet Loss Threshold	Specify the threshold value for link utilization when traffic on a link exceeds this value, PCE controller triggers re- routing for label switched paths (LSPs).
	slices	Decimal value that represents a logical network on a physical network.

Router objects advertised via BGP-LS

PCE value add database configured objects

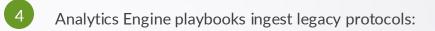
Use-cases


Use Case – Delay Based Routing


Outcome Revenue growth

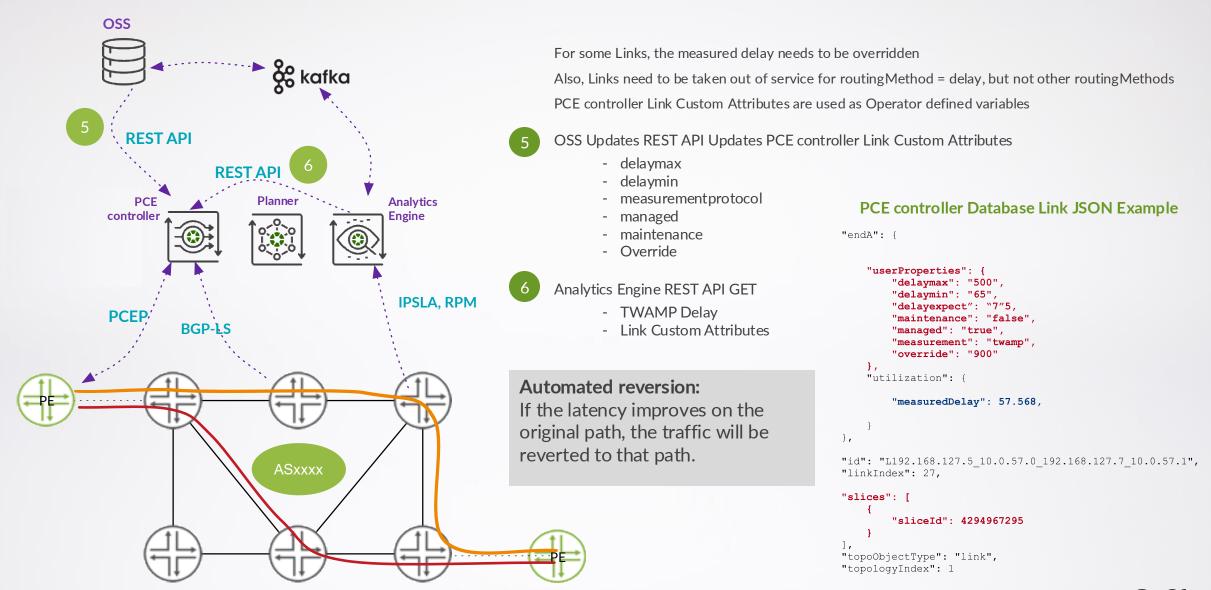
Ingest Delay Measurement Cisco IPSLA, JUNOS RPM, IETF TWAMP **Delay Measurement** TWAMP direct to PCE controller via BGP-LS - Multiple protocols supported for migration/upgrade Delay Analytics Engine Playbook - Calculate *delay* with any user defined *overrides*. **Analytics Engine** - E.g., artificially increase/decrease as Calculation required based on design Control if Link pruned, measured, maintenance. Analytics Engine Playbook **REST API PATCH PCE controller Link delay** Update Link Delay REST API PATCH PCE controller Link in/out PCE service. **PCE** Optimization PCE optimizes RSVP/SR-TE LSPs **PCE** Optimization RSVP/SR-TE LSPs have guaranteed lowest delay SLA.

Use Case – Delay Based Routing



TWAMP is sent to PCE controller in BGP-LS

Analytics engine needs measure delay to calculate a usable delay


Analytics Engine REST API GET for TWAMP Delay

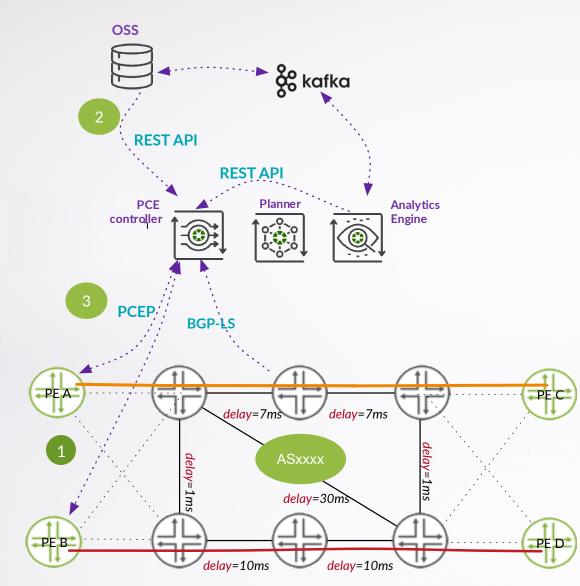
JUNOS RPM & Cisco IPSLA

Use Case – Delay Based Routing

Juniper Public

Custom RSVP/SR-TE LSPs for high value customers **RSVP/SR-TE LSP** Head end diversity. Link diversity Optimized based on delay. **RSVP/SR-TE** LSPs **BGP Color Community** Customer specific BGP Color community **BGP** Color - Measures prefix bps Community Compares prefix bps to % of Inter-AS link Triggers alarm if in excess. Analytics Engine Playbook **Analytics** - Publish Kafka Notification OSS update Engine **RSVP/SR-TE LSP** OSS Monitor - Consume Kafka Notification Path Diversity **OSS Update RSVP/SR-TE LSP** Analytics Engine - Monitor Path Diversity of RSVP/SR-TE LSPs Monitor - Alarm is Diversity is not satisfied.

Use Case – Strict Diversity Guarantee Outcome


Customer experience

BGP Color

Community

Use Case – Strict Diversity Guarantee

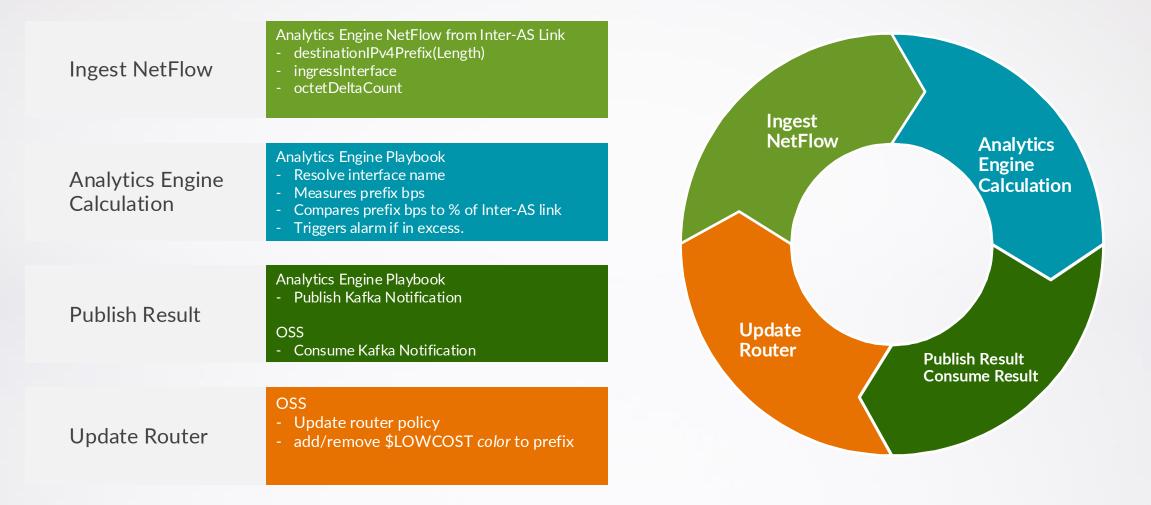
- OSS configures two (2) RSVP/SR-TE LSP in PE A and PE B
 - Customer-specific BGP color community
 - PCC delegated to PCE controller

OSS REST API PATCH RSVP/SR-TE LSP

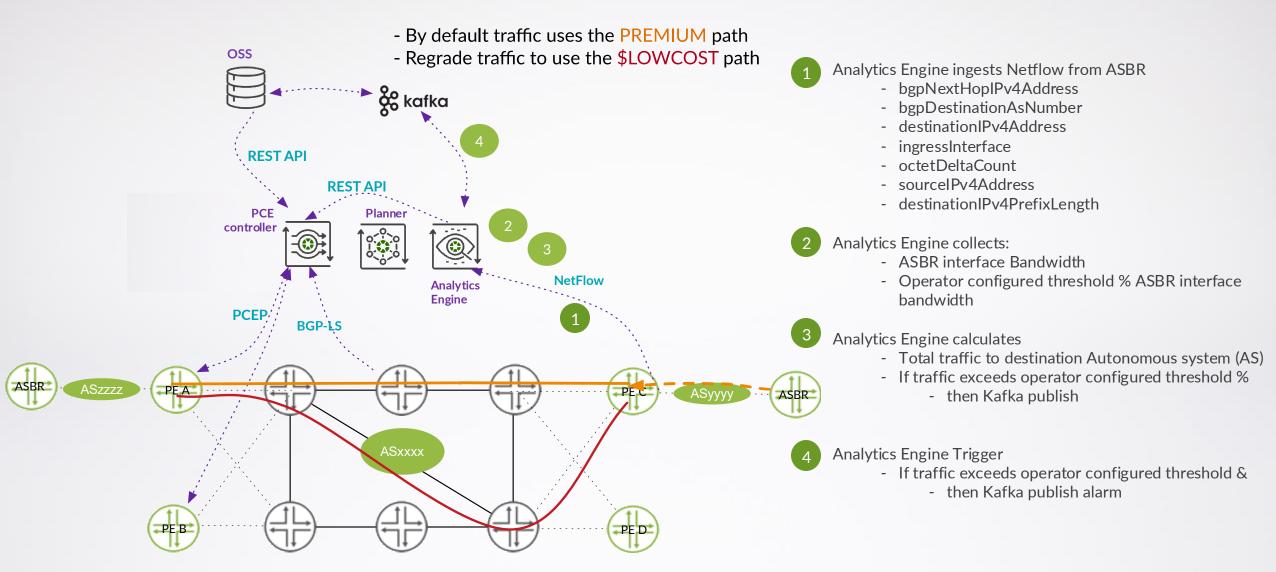
- routingMethod = delay
- PCE controller Diversity parameters
 - diversityGroup
 - diversityLevel

REST API PATCH /traffic-engineering/api/topology/v2/1/te-lsps/<index>

```
"plannedProperties": {
    "design": {
        "routingMethod": "delay",
        "adminGroups": {
            "attributeIncludeAll": 4096,
            "attributeExclude": 3224371456
        }
        "diversityGroup": "PEA-PEB-MASTERGIP9999999",
        "diversityLevel": "site"
     }
},
"pathType": "primary",
"lspIndex": <index>,
"provisioningType": "SR"
```


PCE controller optimizes network using PCEP

- diversityGroup RSVP/SR-TE LSPs are optimized together.



Use Case – Service Prioritization

Outcome Cost Saving

Use Case – Service Prioritization

Use Case – Smart Bandwidth Revenue growth Outcome Ingest RSVP/ SR-TE LSP on congested Links REST API GET LSPs on or thru Link Ingest NetFlow Ingest NetFlow from Inter-AS Link bgpNextHopIPv4address Ingest **RSVP/SR-TE LSPs** and NetFlow Analytics Analytics Engine Playbook Engine - Correlate RSVP/SR-TE LSP and NetFlow Analytics Engine Calculation records Calculation - RSVP/SR-TE LSP Ingress and Egress PE with NetFlow source and bgpNexyHopIPv4address Analytics Engine Playbook - Publish Kafka Notification **Publish Result** Update OSS Consume Kafka Notification Router **Publish Result Consume Result** OSS - Update router policy Update Router - add/remove BURST *color* to prefix

Use Case – Smart Bandwidth

- Internet traffic has four(4) Service Offerings routed over three(3) RSVP/SR-TE LSPs

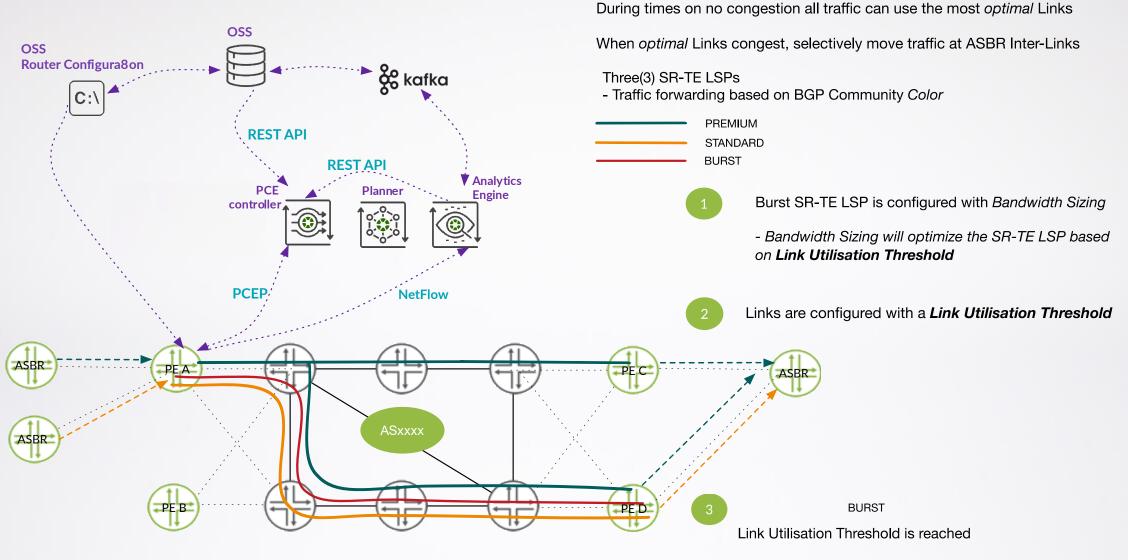
1. PREMIUM

a. Always routes over the most optimal low latency path

2. STANDARD+

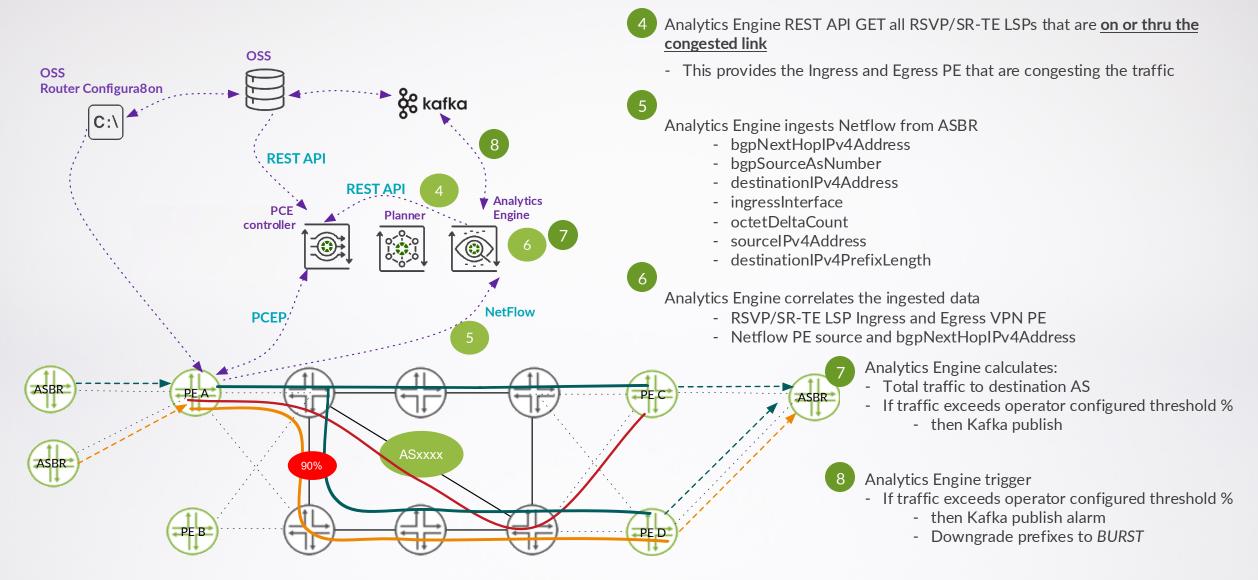
a. Always routes over the most optimal IGP path

3. STANDARD


- a. Routes over the optimal IGP path
- b. During congestion prefixes are *downgraded to BURST* based on measured traffic volume and business rules.

4. BURST

- a. Routes over the optimal IGP path
- b. During overall network congestion routes over links *not configured with Link Utilization Threshold* (and therefore \$cheaper longer latency links).
- c. Routes over links that may undergo congestion.


Use Case – Smart Bandwidth

BURST SR-TE LSP is optimised to avoid link at 90%

Use Case – Smart Bandwidth

THANK YOU

