

New Asian IP Backbone Architecture

Hideo Ishii

Vice President, Product Strategy & Management, IP & Cloud Services Pacnet

> MyNOG 16th January 2012

Who is Pacnet?

International Connectivity in Asia

- Countries in the Asia Pacific region connect to each other primarily using subsea cables – over 88% of intra-Asia traffic is through subsea cables
- Primary gateway for US – Asia traffic is Japan

International Connectivity in Asia

- Unique Positioning
 - Intra-Asia IP communications is mainly over subsea cable systems
 - Typically a RING topology bridging multiple countries is used
 - Cable length between cable landing stations is not too long, for example, between 1,800km – 3,400km (EAC)

Asia <> US IP Backbone Design

- A. Layer 3 backbone circuits in Asia connect to US via Cable Landing Stations in Japan
- B. Layer 3 backbone circuits connect to Tokyo/Osaka POPs from Asian countries, then both POP connect to US IP POPs
- C. A + B combination

Subsea Network Operations

SDH Ring Protection

- Unidirectional 1+1 subnetwork connection protection (SNCP)
- Multiplex Section-Dedicated Protection Rings (MS-SD Ring)
- Multiplex Section-Shared Protection Rings (MS-SP Ring)

SDH Ring Protection

MS-SP Ring Protection

SDH Ring Protection

• MS-SP Ring Protection + TOP (TransOceanic Protocol)

Power Feeding (Normal)

Power Feeding in Cable Fault

Fault location (1)

1. Shunt Fault

DC current into the ocean \rightarrow **Voltage measurement**

COTDR (Coherent Optical Time Domain Reflectance)

PACNET

Network Topology of Subsea Cable

IP Backbone in Asia

Design Challenges in Asia

- Internet traffic volume, as well as traffic direction from each Asian country is different – therefore Internet backbone design is not efficient now
- Not easy to change "traffic aggregation point"
- Low statistical multiplexing effect on international circuits due to backbone bandwidth and customer port bandwidth being the same

Design Challenges in Asia

Generated at: GMT 2009/12/08 10:06 AM Graph in Time Zone: Asia/Hong_Kong

All - DIA/IP Transit circuits in profile

Generated at: GMT 2009/12/08 10:09 AM

Graph in Time Zone: Asia/Hong_Kong

Simple Layer3 Network Connectivity

As commonly known, IP architects can see topology using traceroute easily. (But SP can hide actual topology using MPLS-TE anyway) PACNET

IP Backbone and Layer 1 Backbone

Each Layer has each network topology and restoration and rerouting technology

Traditional Asia <> US IP Backbone Architecture

NEW Asia <> US IP Backbone Architecture

Circuit Protection by Router

Backhaul Configuration

10GE WAN-PHY
STM64 SDH Interface
10GE LAN-PHY

BFD is possible solution and also IEEE802.1ag (CC) is also other way to maintain 10GE LAN-PHY Backhaul Circuits.

Router Configuration

- Interface carrier-delay
 - Backhaul side : 100ms
 - Subsea side : 0ms
- Backbone Circuits (n x 10Gbps)
 - Link Aggregation
 - Reduce IPv4 allocation /30
 - LACP Hello can help failure detection

Design Concept

- No longer traditional Ring Protection mechanism on top of subsea cable system
- Use 10GE WAN-PHY since WAN-PHY Interface detects alarm of subsea portion from OTN
- MPLS LSR will perform FRR (Active and Standby LSPs) instead of Ring Protection – Subsea is basically 1+1 conf, Active + standby LSPs therefore is reasonable.
- Traffic monitoring will be based on LSP traffic data
- LSP hierarchy
- Additional RR hierarchy
- No GMPLS/ASON, "no c-place and d-plane separation"

Network Advantages

- Contingency plan
 - City POP failure and cable cut by earthquake
- Route Flexibility
 - Explicit LSP allows us to utilize alternative active paths using "Protection Path"
- Better traffic aggregation by Cable Landing Station routers
 - Eliminate SDH level hierarchy, aggregation is LSP level with flexible BW
- Easy to upgrade subsea portion to 40G or 100G in near future
- Eliminate SDH related CAPEX at Cable Landing Station

Operational Preparation

At Cable Landing Stations

- High performance Router with redundancy
- No Virtual Router
- Single Interface card will be used as much as possible
 - Spare and reusable purpose
- Of course, IPv6 is enabled

