

The IPv6 Transition

Hideo Ishii

Vice President, Product Strategy & Management, IP & Cloud Services Pacnet

> MyNOG 16th January 2012

IPv6 Transition

Introduction

Pacnet launched IPv4/IPv6 dual stack IP Transit service globally in 2010

Top 25 Transit/Upstream AS numbers in the routing table

This represents the number of distinct prefixes for which these AS's provide transit (i.e. are seen as upstream AS).

ransit/upstream AS number	AS description	number of prefixes
S6939	HURRICANE - Hurricane Electric, Inc.	565
AS29208	DIALTELECOM-AS Dial Telecom, a.s.	212
AS2914	NTT-COMMUNICATIONS-2914 - NTT America, Inc.	150
AS10217	NTT-NET-ID-AS PT. NTT Indonesia	96
\C4926	VOCUS-BACKBONE-AS Vocus Connect International Backbone	89
AS8359	COMSTAR COMSTAR-Direct global network	62
AS3356	LEVEL3 Level 3 Communications	62
AS6453	GLOBEINTERNET TATA Communications	58
R03237	TINET-BACKBONE Tinet SpA	53
	PACNET Pacnet Global Ltd	51
	RETN-AS ReTN.net Autonomous System	48
AS17832	SIXNGIX-AS-KR Korea Internet Security Agency	46
AS2516	KDDI KDDI CORPORATION	45
AS2497	IIJ Internet Initiative Japan Inc.	44
	GBLX Global Crossing Ltd.	44
AS7473	SINGTEL-AS-AP Singapore Telecommunications Ltd	43
456762	SEABONE-NET TELECOM ITALIA SPARKLE S.p.A.	41
AS1299	TELIANET TeliaNet Global Network	38
	HKIX-RS1 Hong Kong Internet ExchangeRoute Server 1	36
	KREONET2-AS-KR Korea Institute of Science and Technology Information	nation 34 ISP 34
AS17451	BIZNET-AS-AP BIZNET ISP	
AS4713	OCN NTT Communications Corporation	29
AS1237	KREONET-AS-KR Korea Institute of Science	29

IPv6 Transition - History

- Since 2001, Pacnet (previously Asia Global Crossing/Asia Netcom) has been looking at IPv6 deployment globally
- The first step was using a "GRE tunnel" solution for eBGP & static (to customer) and iBGP (Backbone)
- 2003 2007: Looking at IGP and OS under native IPv6 / IPv4 dual stack
- 2008: Pacnet deployed native IPv6/IPv4 network globally
- 2010 2011: Pacnet domestic IP networks (Singapore, Australia and Hong Kong) deployed native IPv6/IPv4 dual stack

IPv6 Transition Steps: The Network Perspective

- Enable GRE (IPv6 over IPv4) tunnel between IPv6 enable routers to exchange IPv6 routes and for IPv6 transport
- Deploy IPv6 IGP (Interior Gateway Protocol) and BGP (Border Gateway protocol) partially as minimum implications
 - Partial Dual Stack
- 3. Deploy IPv6 IGP and BGP globally
 - Completely Dual Stack

IPv6 Transition Steps: The Operations and Provisioning Perspective

- IPv6 was a trial service for a long time (a few years ago)
 - Operation and provisioning were best effort
 - Provided Email interface only
- IPv6 training
 - Asked venders to do IPv6 technical and operational training
 - Allow them to login to "test lab" routers to do hands-on training
- IPv6 commercial documents
 - Updated the documents / processes so that backend staff can support IPv6 orders smoothly

Objectives^{11,12}

- Provide IPv6 connectivity
 - Need IPv6 address from APNIC
 - Need IPv6 full routes
 - Need IPv6 peering sessions globally
 - Need IPv6 numbering plan
 - etc..

Objectives

- NO SERVICE IMPACT!
 - 6PE (MPLS) vs. IP routing
 - Simply IP Routing
 - IS-IS multi-Topology vs. OSPFv3
 - IS-IS Multi-Topology chosen after long term evaluations at test lab
 - Traditional BGP vs. address-family (Cisco)
 - Moved to address-family IPv4 and IPv6

Observations

- Lack of traffic... around 0.03%
 - e.g. IPv6: 3Mbps vs. IPv4: 10,000Mbps
- Lack of customer demand
 - Is it an issue of marketing and sales pitch ?
- Routing Optimization is not completed
 - Observed during W6D....reach to US Tier-1 site...
 SG->JP->US->DE->FR->US and 6 AS Hops

Observations

- Monitoring tools (like MRTG) need special configuration to poll IPv6 traffic statistics
 - Apply filter to collect IPv6 traffic data
 - Create policy-map to collect IPv6 traffic data
- Netflow v9 can collect flow data of IPv6
 - Need to upgrade from particular IOS to XR
- Should BGP related policy be similar to IPv4?

Observations

- A variety of IPv6 demand in the Asia-Pacific region
 - Demands also varies across market segments
- Who will be IPv6 Tier-1 ?
- We need a deep dive into the IPv6 requirements of broadband customers in Hong Kong, Singapore and Australia
- Data Center and Hosting customer demands
 - What is the new budget that is needed to meet the demands from them?

